
Fuzzy Systems and Soft Computing  
ISSN : 1819-4362 
 

LOCAL PRIME DISTANCE ANTIMAGIC LABELING OF GRAPHS 
 

G. Megala, Research Scholar, Mother Teresa Women’s University, Kodaikanal, Dindigul, Tamil Nadu, 
India. Guest Lecturer, Department of Mathematics, M.V. Muthiah Government Arts College for 

Women, Dindigul, Tamil Nadu, India. E-mail: megalagpgd@gmail.com 
 K. Annadurai, Associate Professor and Head, Department of Mathematics, M.V. Muthiah Government 

Arts College for Women, Dindigul, Tamil Nadu, India. 

 
ABSTRACT 
Let  ,G V E  be a graph of order n . Let    : 1,  2 . . . ,  f V G n  be a perfect mapping. For every 

node  t V G , we define the weight of the node t  as    
 a N t

w t af


   where  N t  is the open 

neighborhood of the node t . The perfect mapping f  is said to be a local prime distance antimagic 

labeling of G  if for every pair of adjacent nodes  ,s t V G ,    w s tw  and     gcd , 1f s f t  . 

The local prime distance antimagic labeling f  defines a proper node coloring of the graph G , where 

the node t  is assigned the color  w t . We define the local prime distance antimagic chromatic number 

 lp G  to be the minimum number of colors taken over all colorings induced by local prime distance 

antimagic labeling of G . In this paper, we introduce the parameter  lp G  and compute the local prime 

distance antimagic chromatic number of graphs. 
Keywords: Local distance antimagic labeling, distance antimagic labeling, local prime distance 
antimagic labeling, local prime distance antimagic chromatic number. 
Mathematics Subject Classification : 05C78 
 
INTRODUCTION: 
Initially, graph theory was used to solve amusing mathematical conundrums. This area of 
interdisciplinary research between Mathematics and other Sciences has grown significantly in the past 
few decades. A graph is the most powerful type of discrete structure due to its real-world applications 
and scientific fields. A graph can be represented by a numeric number, a polynomial, a sequence of 
numbers, or a matrix that represents the entire graph. Graph labeling is a fundamental aspect of graph 
theory as well as, a mathematical field dedicated to understanding the characteristics and relationships 
within graphs. It entails the assignment of labels, numeric values assign to the nodes, arcs of a graph 
according to specific guidelines, restrictions and constraints to construct a graph and its applications in 
real time scenarios. 
This process is highly relevant across diverse disciplines including Computer Science, network analysis, 
Biology, Chemistry, Social Sciences and so on. The practical applications of graph labeling are extended 
in network routing, graph visualization, scheduling problems, and code optimization. Moreover, 
exploration of graph labeling has prompted by the development of inventive algorithms and 
mathematical approaches which is aimed at addressing challenges within graph theory. The real time 
applications of graph labeling further extended to social media too. 
Let  ,G V E  be a finite, undirected and connected graph with neither loops nor multiple arcs. The 

ssnode and arc sets of a graph G are denoted by  V G
 
and  E G , respectively. A labeling of a graph G 

is a mapping that carries a set of graph elements, usually the nodes and arcs into a set of numbers, 
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usually integers. A node labeling of a graph G is a mapping f from the nodes of G to a set of elements, 

often integers. Each arc xy has a label that depends on the nodes x and y and their labels  f x and  f y

. If the domain is ( ) ( )V G E G  then the labeling is called total labeling. 
The motivation and inspiration of this research work are to propose a novel labeling approach to label 
graphs in a new way, in contrast to other recent strategies, which have mostly been enhancements of 
established procedures and formulated on specific labelings like prime labeling and local distance 
antimagic labeling. The authors of this paper keen on formulating a new graph labeling, namely, local 
prime distance antimagic labeling.  
 
REVIEW OF LITERATURE: 
Rosa [15] triggered of a new concept in graph labeling (it was named as  -valuation). The various 
types of labeling are investigated by Gallian [6]. The concept of the prime labeling originated with 
Entringer [5] and was introduced by Tout et al. [17]. Hartsfield and Ringel [10] introduced the concept 
of an antimagic labeling. Distance antimagic labeling was introduced by Arumugam and Kamatchi [1]. 
Kamatchi and Arumugam [13] proved that the cycle graphs, the wheel graphs and the path graphs are 
distance antimagic graphs. Kamatchi et al. [14] proved hypercube graphs and several classes of 
disconnected graphs are distance antimagic. Simanjuntak and Wijaya [16] proved that sun graphs, prism 
graphs, complete graphs, wheel graphs, fans and friendship graphs are distance antimagic graphs.  
Arumugam et al. [2] derived local antimagic labeling and they obtained some basic results. Bensmail et 
al. [3] proved that every tree other than 2K  is local antimagic. Haslegrave [11] proved that every 

connected graph other than 2K  is local antimagic. Motivated by this concept, Handa et al. [8] developed 

the different ideas of a graph labeling which is a local distance antimagic labeling. For more details on 
this labelings we refer to Handa [7] and Handa et al. [9]. Divya and Yamini [4] introduced the parameter 

 ld G  and compute the local distance antimagic chromatic number of graphs. 

 
PRELIMINARIES : 
Now, graph labeling is defined below: 
Definition 3.1 (Rosa [15]) If the nodes or arcs or both of the graph are assigned valued subject to certain 
conditions, then it is known as graph labeling. 
Here, prime labeling is defined below: 
Definition 3.2 (Tout et al. [17]) Let    ,  G V E  be a graph. If  : 1, 2,...,f V V  is an one-to-one 

correspondence function. Then f  is said to be a prime labeling if for each e uv E  , we have 

    gcd , 1f u f v  . The graph that admits a prime labeling is called a prime graph. 

 Next, the definition of various types of antimagic labeling techniques is presented to make this 
paper self-contained.  
Definition 3.3 (Hartsfield and Ringel [10]) Let  ,G V E  be a graph. Let  : 1,2,...,| |f E E  be a 

perfect mapping. Then the map f  is said to be a antimagic labeling of G  if weight of all nodes are 
distinct, where weight of a node a  is the sums of the labels of the arcs incident to the node a . 
Definition 3.4 (Arumugam and Kamatchi [1]) Let  ,G V E  be a graph. Let  : 1,2,...,| |f V V  be a 

perfect mapping.If    
 x N a

w a f x


   is the weight of the node a . Then the map f  is said to be a 

distance antimagic labeling of G  if all nodes have distinct weights. A graph that admits distance 
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antimagic labeling is called a distance antimagic graph. It is clear that if a graph contains two nodes with 
the same open neighborhood, then it does not admit a distance antimagic labeling.  
Kamatchi and Arumugam [13] then conjectured that the converse of the previous statement is also true 
and proposed the following: 
Conjecture 3.1 A graph G  is distance antimagic if and only if G  does not have two distinct nodes with 
the same open neighborhood.  
Definition 3.5 (Arumugam et al. [2]) Let  ,G V E  be a graph. Let  : 1,2,...,| |f E E  be a perfect 

mapping. Let  E a  be a set of arcs incident to a node a . If    
 e E a

w a f e


   is the weight of the node 

a . Then the map f  is said to be a local antimagic labeling of G  if    w a w b  for all  ab E G . 

Thus any local antimagic labeling induces a proper vertex coloring of G  where the node a  is assigned 
the color  w a . The local antimagic chromatic number  la G  is defined to be the minimum number 

of colors taken over all colorings of G  induced by local antimagic labelings of G . 
Definition 3.6 (Handa et al. [8]) Let  ,G V E  be a graph. Let  : 1,2,...,| |f V V  be a perfect 

mapping. If    
 x N a

w a f x


   is the weight of the node a . Then the map f  is said to be a local 

distance antimagic labeling of G  if    w a w b for all  ab E G . 

Definition 3.7 (Divya and Yamini [4]) The local distance antimagic chromatic number  ld G  is 

defined as the minimum number of colors taken over all colorings induced by local distance antimagic 
labelings of G . 
Motivated by these definitions, we introduce a concept named a local prime distance antimagic labeling 
of graphs. Also, a new parameter, its denotes  lp G , named as local prime distance antimagic 

chromatic number. 
 
LOCAL PRIME DISTANCE ANTIMAGIC LABELING: 
This section defined that the local prime distance antimagic graphs and computed its properties for some 
classes of graphs. 

Definition 4.1 Let  ,G V E  be a graph. Let  : 1,  2 . . . ,  f V V  be a perfect mapping. If 

   
 a N t

w t af


 
 
is the weight of the node t . Then the map f  is called the local prime distance 

antimagic labeling of G  if for any  st E G , 

(i)    w s tw
 
and 

(ii)     gcd , 1f s f t  . 

A graph G  is local prime distance antimagic if G  admits a local prime distance antimagic labeling. This 
induces a proper node coloring of the graph, with the node t  assigned the color  w t . This leads to the 

following definition. 
Definition 4.2 The local prime distance antimagic chromatic number is defined as the minimum number 
of colors required to proper color the graph induced by local prime distance antimagic labeling of G and 
is denoted by  lp G . 
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 Here we compute the local prime distance antimagic chromatic number of star-related graphs. 
We know that the chromatic number of star graph  nS  is 2. The following Theorem provides the 

local prime distance antimagic chromatic number of star graph  lp nS  is 2. Thus, we infer that 

   lp n nS S  . 

Theorem 4.1   2lp tS  . 

Proof. Take G  be a star graph tS  containing 1t   nodes. Let    , :1iV G a b i t    and 

   :1iE G ab i t   where a  is the internal node and ib  are pendent nodes. Following that 

  1V G t  and  E G t . We define a perfect mapping    : 1,2,..., 1f V G t   by  

    1f a  and 

    1if b i  , 1 i t  . 

Then     gcd , 1if a f b  , 1 i t   and the node weights are as follows. 

      1iw b f a  and 

  

       
 

  

1 2 ...

2 3 ... 1

1 2
1.

2

tw a f b f b f b

t

t t

   

    

 
 

 

Clearly,    iw a w b , 1 i t  . Hence,    w u w v  for any two neighbourhood nodes ,u v  in G . 

Thus,   2lp tS  . Figure 1 shows the local prime distance antimagic chromatic number of tS . 

 
Theorem 4.2  2, 2lp tS t  

 
for 3t  . 

Proof. Let G  be a subdivision of star graph 2,tS  containing 2 1t   nodes. . Let 

   1 2, , :1i iV G a a a i t   and    1 1 2, :1i i iE G aa a a i t   . Following that   2 1V G t  and 

  2E G t . We define a perfect mapping    : 1,2,...,2 1f V G t   by  

1 

2 3 4 5 6 7 t t+1 

… 

Figure 1 Local prime distance antimagic labeling of star tS . 
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    1f a 
 
and 

    2 1j
if a i j   , 1 i t  , 1,2j  . 

Then          1 1 2gcd , gcd , 1i i if a f a f a f a  , 1 i t  . Therefore,     gcd , 1f u f v    for any 

two neighbourhood nodes ,u v in G . For the node weights we get 

         1 1 1
1 1 2 ... 2 4 6 ... 2 1tW w a f a f a f a t t t           

 

              1 2
2 :1 :1 1 2 1 :1 2 2 :1 4,6,8,...,2 2i iW w a i t f a f a i t i i t i i t t                 

 

         2 1
3 :1 :1 2 :1 2,4,6,...,2i iW w a i t f a i t i i t t          . Therefore, 

 
  1 2 3 2,4,6,...,2 ,2 2, 1W W W W t t t t     .  

For each i , since 2 2 2i i  ,    1 2
i iw a w a . Now, for any 3t  , the number   21 2 2t t t t t     . 

This implies    1
tw a w a . Thus,    1

iw a w a , 1,2,...,i t . Therefore,    1
iw a w a , 1,2,...,i t . 

This implies that, 2W t  and    w u w v  for any uv G  and thus,  2, 2lp tS t  
 
for 3t  . 

Figure 2 shows the local prime distance antimagic chromatic number of  2,tS . 

 

 
Theorem 4.3  , 4lp t tB 

 
for 2t  . 

Proof Let G be a bistar graph ,t tB . Let    , , , :1i iV G a b a b i t   and    , , :1i iE G ab aa bb i t   . 

Following that    2 1V G t 
 
and   2 1E G t  . We define a perfect mapping 

    : 1,2,...,2 1f V G t   by 

  1f a  ,   2f b  ,   2 2if a i  , 1 i t   and   2 1if b i  , 1 i t  . 

 

 

1 

2 4 6 8 2t 

2(t-1) 

3 

… 

…… 
5 7 9 

2(t-1)+1 

2t+1 

2(t-2) 

Figure 2 Local prime distance antimagic labeling of subdivision of 

star graph 2,tS . 

t(t+1) 

4 6 8 10 2t+2 2(t-1)+2 2(t-2)+2 

2 4 6 8 2(t-1)+2 
2(t-2)+2 
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Then we have, 
i.       gcd , gcd 1,2 1f a f b   , 

ii.       gcd , gcd 1,2 2 1if a f a i   , 1 i t   and 

iii. For 1 i t  ,       gcd , gcd 2,2 1 1if b f b i    (since 2 1i   is odd). 

Therefore,     gcd , 1f u f v 
 
for any two adjacent nodes ,u v  in G . The node weights are as follows: 

               1 1 2 ... 2 4 6 8 ... 2 2 1 2tW w a f b f a f a f a t t t                . 

             2

2 1 2 ... 1 3 5 7 ... 2 1 1tW w b f a f b f b f b t t               . 

     3 :1 1iW w a i t f a     . 

     4 :1 2iW w b i t f b     . Thus,  

     2

1 2 3 4 1,2, 1 2 , 1W W W W W t t t       . That is, clearly, 4W   and    w u w v  for any 

two adjacent nodes ,u v in G . Hence  , 4lp t tB 
 
for 2t  . Figure 3 shows the local prime distance 

antimagic chromatic number of 5,5B . 

s 
Theorem 4.4   , 4lp s tB 

  
for  , 2s t  . 

Proof. Let G be a double star graph ,s tB . Without loss of generality, we may assume that s t .  

Consider    , , , :1 ,1i jV G a b a b i s j t     and    , , :1 ,1i jE G ab aa bb i s j t     . Thus 

  2V G s t   and   1E G s t   . Let us define a perfect mapping    : 1,2,..., 2f V G s t    by 

  1f a  ,   2f b  ,   2 2if a i   1 i s  ,   2if a i s    1s i t   and   2 1if b i   1 i s  . 

Then prime labeling conditions are as follows: 

1 2 

4 

6 

8 

1

1

3 

5 

7 

9 

11 

4 36 

1 

1 

1 

1 

1 

2 

2 

2 

2 

2 

Figure 3 Local prime distance antimagic labeling of bistar graph 5,5B . 
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i.       gcd , gcd 1,2 1f a f b   , 

ii. For 1 i s  ,       gcd , gcd 1,2 2 1if a f a i   , 

iii. For 1s i t   ,       gcd , gcd 1, 2 1if a f a i s     and 

iv. For 1 i s  ,       gcd , gcd 2,2 1 1if b f b i    (since 2 1i   is odd). 

The node weights are as follows: 
               

       
   

1 1 2 1 2... ...

2 4 6 8 ... 2 2 2 3 2 4 ... 2

1 4 2 5
.

2

s s s tW w a f b f a f a f a f a f a f a

s s s s t

n n m m n

          

                    
    



 

             2

2 1 2 ... 1 3 5 7 ... 2 1 1sW w b f a f b f b f b s s               . 

     3 :1 1iW w a i t f a     . 

     4 :1 2iW w b i s f b     . Thus we have, 

     2

1 2 3 4

1 4 2 5
1,2, 1 ,

2

n n m m n
W W W W W s

     
   

 
   . That is, clearly, 4W   and for 

any two adjacent nodes ,u v in G ,    w u w v . Hence  , 4lp s tB  for , 2s t  . 

Theorem 4.5  , : 5lp t tB w  for 2t  . 

Proof. Let G be a subdivision of a bistar graph , :t tB w . Let    , , , , :1i iV G a b c a b i t   and

   , , , :1i iE G ac bc aa bb i t   . Following that   2 3V G t  and    2 1E G t  . Let  

   : 1,2,...,2 3f V G t 
 
be a perfect mapping defined by 

  1f a  ,   2f b  ,   3f c  ,   2 2if a i   and   2 3if b i  , 1 i t  . 

Then we have, 
i.       gcd , gcd 1,3 1f a f c   , 

ii.       gcd , gcd 2,3 1f b f c   , 

iii.       gcd , gcd 1,2 2 1if a f a i   , 1 i t   and 

iv. For 1 i t  ,       gcd , gcd 2,2 3 1if b f b i    (since 2 3i   is odd). 

Thus for any two adjacent nodes ,u v in G , the greatest common divisor is 1. Next, we have the node 
weights are 

               2
1 1 2 ... 3 4 6 8 ... 2 2 3 1 2 2 3 3tW w a f c f a f a f a t t t t t                      

. 

             2 2
2 1 2 ... 3 5 7 ... 2 3 2 1 4 3tW w b f c f b f b f b t t t t                  . 

     3 1 2 3W w c f a f b      . 

     4 :1 1iW w a i t f a     . 
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     5 :1 2iW w b i t f b     . 

Hence, 5W  where  2 2
1 2 3 4 5 1,2,3, 3 3, 4 3W W W W W W t t t t         and also clearly,

   w u w v  for any  uv E G . Thus,  , : 5lp t tB w  for 2t  . 

Theorem 4.6   3 2 1lp tFr t   for 2t  .  

Proof. If G is a friendship graph  3
tFr . Taking    , , :1i iV G a b c i t  

 
and 

   , , :1i i i iE G ab ac b c j t   . We have   2 1V G t 
 
and   3E G t . Define a perfect mapping

   : 1,2,...,2 1f V G t   by 

  1f a  ,   2if b i , 1 i t  , and   2 1if c i  , 1 i t  . 

Then prime labeling conditions are as follows: 
i. For1 i t  ,       gcd , gcd 1,2 1if a f b i  , 

ii. For 1 i t  ,       gcd , gcd 1,2 1 1if a f c i    and 

iii. For 1 i t  ,       gcd , gcd 2 ,2 1 1i if b f c i i    (since 2i  and 2 1i  are consecutive 

integers). 
The node weights are as follows: 

             
   
      

1 1 2 1 2... ...

2 4 6 8 ... 2 3 5 7 ... 2 1

2 1 2 2 2 2 3
1 2 3 .

2 2

t tW w a f b f b f b f c f c f c

t t

t t t t
t t

        

             
  

    

 

              2 :1 :1 1 2 1 :1 2 2 :1 4,6,8,...,2 2i iW w b i t f a f c i t i i t i i t t                 
. 

           3 :1 :1 1 2 :1 3,5,7,...,2 1i iW w c i t f a f b i t i i t t             . 

Therefore,   1 2 3 2 3 ,2 1,2 2 :1W W W W t t i i i t        . For every i , suppose that 

2 1 2 2i i   . Then 1 2 , which is not possible. Thus we have    i iw b w c , That is, clearly, 

     i iw b w a w c 
 
because   2 3 2 1t t t  

 
and  2 3 2 2t t t   .  

Hence 2 1W t   and    w u w v  for any two neighborhood nodes ,u v  in G  and thus, 
  3 2 1lp tFr t   for 2t  . Figure 4 shows the local prime distance antimagic graph for  3

tFr . 
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Theorem 4.7   4 2 1lp tFr t  
 
for  2t  . 

Proof. Let G be a friendship graph  4
tFr . Taking    , , , :1i i iV G a b c d i t   and 

   , , , :1i i i i i iE G ab ac b d c d j t   . We have   3 1V G t  and   4E G t . Let 

   : 1,2,...,2 1f V G t   be a perfect mapping defined by 

  1f a  ,    3 1 2if b i   , 1 i t  ,    3 1 4if c i   , 1 i t   and   3if d i , 1 i t  . 

Then for any two adjacent nodes ,u v in G ,     gcd , 1f u f v  because we have, 

i. For1 i t  ,        gcd , gcd 1,3 1 2 1if a f b i    , 

ii. For 1 i t  ,        gcd , gcd 1,3 1 4 1if a f c i     and 

iii. For 1 i t  ,          gcd , gcd 3 1 2,3 gcd 3 1,3 1i if b f d i i i i       (since 3i  and 

3 1i   are consecutive integers). 
iv. For 1 i t  ,          gcd , gcd 3 1 4,3 gcd 3 1,3 1i if b f d i i i i       (since 3i  and 

3 1i   are consecutive integers). 
The node weights are following in the way: 

             
     

           

1 1 2 1 2... ...

2 5 8 ... 3 1 2 4 7 10 ... 3 1 4

3 1 3 2 3 1
1 2 3 ... 3 1 1 3 6 9 ... 3 1 3 1 .

2 2

t tW w a f b f b f b f c f c f c

t t

t t t t
t t t t

        

                   
  

                

 

           2 :1 :1 3 1:1 4,7,10,...,3 1i iW w b i t f a f d i t i i t t             . 

           3 :1 :1 1 3 :1 4,7,10,...,3 1i iW w c i t f a f d i t i i t t             . 

              
   

4 :1 :1 3 1 2 3 1 4 :1

6 :1 6,12,18,...,6 .

i i iW w d i t f b f c i t i i i t

i i t t

              

   
 

For every i , suppose that 6 3 1i i  . Then 
1

3
i  , which is not possible. Thus we have 

     i i iw b w d w c  .Also,  w a  is greater than  iw b ,  iw c  and  iw d for all i , because 

 3 1 3 1t t t   and  3 1 6t t t  . Hence    w u w v  for all  uv E G . 

 Thus 2 1W t  because   1 2 3 4 3 1 ,3 1,6 :1W W W W W t t i i i t        . Hence 
  4 2 1lp tFr t   for 2t  . 

Theorem 4.8   1lp tW t    for t  is even and 4t  . 

Proof. Consider G is a wheel graph tW . Let    , :1iV G a a i t   and 

   1 1, , :1 ,1 1i j j tE G aa a a a a i t j t      . Following that   1V G t 
 
and   2E G t . We define 

a perfect mapping    : 1,2,..., 1f V G t   by 

  1f a  , and   1if a i  , 1 i t  . 

Then it is noted that 
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i. For1 i t  ,       gcd , gcd 1, 1 1if a f a i   , 

ii. For 1 1i t   ,       1gcd , gcd 1, 2 1i if a f a i i     ,(since 1i   and 2i   are 

consecutive integers) and 
iii.       1gcd , gcd 1,2 1tf a f a t    (since 1t   is odd). 

The node weights are as follows: 

          2

1 1 2

1 2
... 2 3 4 ... 1

2 2t

t t t t
W w a f a f a f a t

  
             , 

         2 1 2 1 1 3 5tW w a f a f a f a t t          , 

            
    

3 1 1: 2 1 : 2 1 1 2 : 2 1

2 3: 2 1 7,9,11,..., 2 1 .

i i iW w a i t f a f a f a i t i i i t

i i t t

                 

      
 

       4 1 1 1 2 3t tW w a f a f a f a t t         . 

Obviously,        i iw a w a i w a w a i     . If 
2

t
i  , then  

2

2 3 3
2t t

t
w a t w a
 

     
 

. 

Also, if 1
2

t
i   , then  1

1
2

2 1 3 5
2t

t
w a t w a



           
  

. Therefore,    w u w v  for any two 

adjacent nodes ,u v in G . 

Thus, we have
2

1 2 3 4

2
,2 3: 2 1

2

t t
W W W W W i i t

  
      

 
   . This implies, 1W t   

and hence,   1lp tW t    for t  is even and 4t  . 

Corrolary 4.1 tW  is not a local prime distance antimagic graph for t  is odd and 4t  . 

Theorem 4.9   1lp tF t    where t  is odd, 5t  and 4t  . 

Proof. Let G be a fan graph tF . Let    , :1iV G a a i t   and    1, :1 ,1 1i j jE G aa a a i t j t     

. Following that   1V G t  and   2 1E G t  . We define a perfect mapping 

   : 1,2,..., 1f V G t   by 

  1f a  ,  and 

  1if a i  , 1 i t  . 

Then prime labeling conditions are as follows: 
i. For1 i t  ,       gcd , gcd 1, 1 1if a f a i   and 

ii. For 1 1i t   ,       1gcd , gcd 1, 2 1i if a f a i i     , (since 1i   and 2i   are 

consecutive integers). 
The node weights are as follows: 

              
1 1 2

1 2 3
... 2 3 4 ... 1 1

2 2t

t t t t
W w a f a f a f a t

  
              , 

     2 1 2 1 3 4W w a f a f a      , 
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              3 1 1: 2 1 : 2 1 2 3: 2 1 7,9,11,..., 2 1 .i i iW w a i t f a f a f a i t i i t t                 
 

     4 1 1t tW w a f a f a t     . 

 
1 2 3 4

3
,4, 1,2 3: 2 1

2

t t
W W W W W t i i t

 
       

 
   . Suppose that    tw a w a . Then 

 3
1

2

t t
t


   1, 2t t   which is not possible because 4t  . Now, 

   

   

 

 

2

2

1

3

2

3
2 1 2 1

2

2
2 1

2
2 1

.t

t t
w a

t t
t t

t t
t

t

w a 





    

 
  

 



 

Thus, for each i, 2 1i t   ,    iw a w a . Also, for 4t  ,      1

3
4

2

t t
w a w a


   . This implies 

   1w a w a . If  5t   is odd, then  tw a  is even and  iw a  is odd, 2 1i t   . Also, if 4t  , then 

   t iw a w a , 2 1i t   . Hence    t iw a w a , 2 1i t   . Obviously,    1 iw a w a , 2 i t  . 

Thus, 1W t   and also, for any two adjacent nodes ,u v inG ,    w u w v . Therefore,   1lp tF t    

where t  is odd, 5t  and 4t  . 
Theorem 4.10  lp tF t   where t  is even, 6t   and  3t  . 

Proof. Consider G is a fan graph tF . Let    , :1iV G a a i t   and

   1, :1 ,1 1i j jE G aa a a i t j t      . Then   1V G t  and   2 1E G t  . We define a perfect 

mapping    : 1,2,..., 1f V G t   by 

  1f a  ,  and 

  1if a i  , 1 i t  . 

Then prime labeling conditions are as follows: 
i. For1 i t  ,       gcd , gcd 1, 1 1if a f a i   and 

ii. For 1 1i t   ,       1gcd , gcd 1, 2 1i if a f a i i     , (since 1i   and 2i   are 

consecutive integers). 
The node weights are as follows: 

              
1 1 2

1 2 3
... 2 3 4 ... 1 1

2 2t

t t t t
W w a f a f a f a t

  
              , 

     2 1 2 1 3 4W w a f a f a      , 
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              3 1 1: 2 1 : 2 1 2 3: 2 1 7,9,11,..., 2 1 .i i iW w a i t f a f a f a i t i i t t                 
 

     4 1 1t tW w a f a f a t     . 

Suppose that    tw a w a . Then 
 3

1
2

t t
t


    1, 2t t    which is contradiction to the 

assumption of t . Now, 

   

   

 

 

2

2

1

3

2

3
2 1 2 1

2

2
2 1

2
2 1

.t

t t
w a

t t
t t

t t
t

t

w a 





    

 
  

 



 

Thus, for every i, 2 1i t   ,    iw a w a . Also, for 3t  ,      1

3
4

2

t t
w a w a


   . This implies 

   1w a w a . Suppose, for 2 1i t   ,    1iw a w a . Then 2 3 4i   
1

2
i 

 
which is not possible. 

Thus,    1iw a w a . Also, we have    i tw a w a  where 2 2t i   and    1 tw a w a where 3t  . 

Thus    w u w v  for any two adjacent nodes ,u v in G .  

 Also, 
 

1 2 3 4

3
,4,2 3: 2 1

2

t t
W W W W W i i t

 
      

 
   . This implies W t . Hence,

 lp tF t   where t  is even, 6t   and 3t  . 

 
CONCLUSION: 
In this paper, the concept of local prime distance antimagic chromatic number of a graph is introduced. 
We found local distance antimagic labelings for several families of graphs including the stars, 
subdivision of stars, bistar graphs, double star graphs, subdivision of a bistar graphs, friendship graphs, 
wheel graphs and fan graphs. We also suggest the following open problem. 
Open problem 1 Determine  lp nP , 1n  . 

Open problem 2 Determine  2,lp nK , 2n  . 

Open problem 3 Determine  2lp nP P  , 2n  . 
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